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In an earlier paper [1] we have solved the problem of emergence of stationary plane- 

parallel convection in a fluid filling a plane vertical channel with permeable boundaries 

and heated from below. We have shown that the characteristic values of the Rayleigh 

number which determine the stability limits with respect to stationary perturbations, 
depend on the velocity of transverse motion of the fluid, and with increasing the P&et 
number the “closure” of the adjacent levels of the instability spectrum ensues. Thus, 

the stationary convection can take place only if the transverse velocity does not exceed 
a certain limit. Discussing this conclusion, we have suggested [l] that the confluence of 

stationary motion levels is accompanied by the emergence of oscillatory convective 
motions. In the present paper we shall produce the results of a numerical analysis of 
nonstationary perturbation spectra. It follows from these results that with increasing the 
P&let number, convective motion of stationary oscillation nature occurs. Hence, depen- 

ding on the parameter (Peclet number), the basic state (transverse motion of the fluid) 

becomes unstable with respect to either monotonic or oscillatory perturbations. The 
analysis of spectra makes it possible to determine the limits of regions of the monotonic 
and oscillatory instabilities. 

1. Let us assume a transverse motion with a constant uniform velocity ug in a plane 

vertical channel with permeable boundaries zc = f h ; heating from undemeath causes 
a linear height distribution of temperature with a gradient A. Let us consider perturbed 
motion described by 
V r=vg, L-y= 0, v, = u ix, t); T = - AZ -/- 0 (x, t); p = p (z, t) (1.1) 

Assuming that the perturbations are exponentially time dependent in accordance with 
exp (-At), the general equations of convection yield the following amplitude equations: 

--vf +v’-v~-Ri+c==O (2.2) 

--hpo - v + UO’ - a8” = 0 (1.3) 

In the above u (.z) and 0 (z) are amplitude parts bf the perturbations and C is the 

variable separation constant. The equations are set in dimensionless variables : the units 
of distance, time, velocity and tem~rature are taken as h, ha i v, x f h and Ah , respec- 

tively. The numbers of Rayleigh R, P&let a and Prandtl P 3re determined as follows: 

R = &47i4 volt 
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The amplitudes satisfy the uniformity conditions 
1 

v (f 2) = 0, e (& 1) = 0, c vdx = 0 
"1 

(i.4) 

The boundary value problem (1.2)-(1.4) determines characteristic perturbations and 
their decrements h. Real h correspond to monotonically damping or increasing with 
time perturbations. The stability limit with respect to these perturbations is found from 
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the condition h = 0, Complex decrements h. = hr + iX, correspond to oscillatory pert 
turbations; the stability limit is defined from the condition At =0, and & yielding the 
dimensionless frequency of oscillations (subscripts denote real and imaginary parts), 

2, We shall solve our problem by means of BubnovGalerkin method. Let us write the 
amplitude functions as series expansions 

u = a& + a,v1 + .*. + aNUN, 0 = 6,8, + b,0, + .a. + b,0, (2.1) 

where v,, and 0, are basic functions satisfying the conditions (1.4). It will be convenient 
to take for the basis the eigenfunctions of the problem of stationary plane-parallel con- 
vection in a vertical channel with impermeable boundaries rd’j 

co9 rnx ch r,.,z 
V*= --- co9 r* ch rn (n = O,2, L.), 

coa r,“: eh r=z 
8,= c&-+-fchr-2 (m=O,2,4...), 

m m 

where rn are the roots of the transcendental equation 

tgr = th T, To = 3,927, 7-2 = 7.069,.., 

~ubstitut~g series (2.1) into the left parts of (1. ‘2) and (1.3), multiply~g by ut and 
6k , respectively, and integrating in t from -1 to 1, we obtain a set of homogeneous 
Iinear equations for the expansion coefficients aR and &,+ The condition that must be 

satisfied if the above set of equations is fo have a nontrivial solution, namely that its 
determinant equals 0, defines the spectrum of eigenvalues h. Computations were carried 
uut for N = M = 7. The eigenvalues of the 16th order matrix were calculated with a 
computer using the orthogonal-step method. 

3, Let us now discuss our results. Characteristic decrements h depend on three para- 
meters, viz. the Rayleigh numberR. The Peckt numbeia and the Prandtl number P* Our 

main interest was in investigating qualitative features of the decrement spectrum struc- 

ture, in connection with the earlier discovered closure of instability levels. All our com- 
mutations were, therefore, carried out for a fixed value of the Prandtl number, P = 1. 

Fig, 1 Pig, -2 

Figures 1 and 2 represent the dependence of the real and imaginary parts of decre- 

ments of the two “lower” perturbation modes on the Rayleigh number for u = 0.5 and 
a! = 1. According to earlier results p], the first of these values of the P&let number is 
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in the region in which stationary motions take place ; there are no stationary motions 
for a = 1 . Comparison of the spectra in Fig. 1 and 2 explains the nature of the process 

of “closure” of neutral lines of stationary perturbations. 

It can be seen in Fig. 1 that for small values of the Rayleigh number both decrements 
are real and positive, and corresponding perturbations damp monotonically. At the point 

o a confluence of the two real spectrum levels occurs and a pair of complex conjugate 
decrements corresponding to oscillatory perturbations is generated, In the interval (a, b) 

the damped oscillations exist (common real part hr is shown dashed, h, > 0). At the 
point 6 the pair of complex conjugate decrements splits again into two real decrements. 
To the right of b only monotonic perturbations are possible ; their real decrements change 

signs consecutively in points c and d , generating twti levels of monotonic instability . 
The corresponding Rayleigh numbers determine the neutral points of monotonic pertur- 
bations or, in other words, the points of existence of stationary convection (the critical 

Rayleigh numbers have practically precise values p]). Thus, for a = 0.5 , the only insta- 
bility possible is that with respect to monotonic perturbations. 

For a = 1 (Fig. 2), as the number Ii increases, there is also at first confluence of real 

levels into a tiomplex conjugate pair (oscillatory perturbations onset point e) and then 
this pair splits into two real decrements (point g). In this case, however, oscillatory per- 

turbations are damped only in the interval (e, f). At the point f the real part of decre- 
ments vanishes and this is the neutral point of oscillatory perturbations. At the proper 

value of the Rayleigh number. convection in the form of stationary oscillations is super- 
posed on the ~ndamental transverse motion (the ~equen~ of neutral oscillations can 

be found from the graph of the imaginary part of decrement hi, shown in Fig. 2). In the 
interval (f, g) oscillatory perturbations grow and at point g two monotonically increas- 
ing perturbations appear, i. e. as the Rayleigh number increases, there are at first increas- 

ing oscillatory perturbations (oscillatory instability). 
When decrement spectra, similar to 

those shown in Figs. 1 and 2, are suita- 
bly processed, we can construct a sta- 

bility chart in the plane (R, a). This 
chart is illustrated in Fig. 3. 

VeRical dashed lines correspond to 
the cutsfa - 0.5 and 1) in which the spec- 
tra in Figs, 1 and 2 are presented. The 

characteristic lines are marked as follows: 

A and B are the neutral lines of mo- 
notonic perturbations, C is the neutral 

line of oscillatory perturbations. The 
dashed curve bounds the region of exist- 

Fig. 3 
ence of oscillatory perturbations. 
The regions in the chart are as follows: 

1 and 2 are the stability regions (in 1 both perturbations damp monotonically, in 2 both 
perturbations damp in an oscillatory manner); 3 and 4 are the monotonic instability 

regions (in 3 one of perturbations grows monotonically, in 4 both perturbations grow 
monotonically); 5 is the oscillatory instability region {both perturbations build up in an 
oscillatory manner). 
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Thus, our investigation of the nonstationary perturbation spectrum in a vertical chan- 
nel with permeable boundaries leads to the conclusion that an oscillatory convective 
instability can exist. For small values of the P&let number (a < 0.8 , cf. Fig. 3), as the 

Rayleigh number increases, transverse motion becomes unstable with respect to monoto- 

nic perturbations, i. e. at the critical value of Rayleigh number (curve A ) stationary 

convection begins to take place. For a > 0.8 the instability expresses itself in oscilla- 

tory perturbations ; after crossing the neutral line C (as R increases) an oscillatory con- 
vection occurs. 

Let us note in conclusion that c1osur.e of stationary levels has been detected earlier 
[3] in a study of convective motion stability in an inclined layer. In the present problem, 
the closure is accompanied not by stabilization as in [3], but by change in the mode of 
instability, namely by transition to oscillatory convection. 
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The purpose of this paper is to develop the asymptotic representation of certain integrals 
encountered in the analysis of the problem of wave motion in an unbounded viscous 
liquid. Attention is also drawn to incorrect application of the stationary phase method 

widely used in a number of recent publications p-211 dealing with the Cauchy-Poisson 
problem of waves on the surface of half-space or layer. 

1, Sretenskii p] published in 1941 a fundamental work on the subject considered in 
the present paper. The second Chapter of p] deals with the two-dimensional Cauchy- 
Poisson problem of waves on the surface of a viscous liquid of infinite depth. By succes- 
sive integral transformations of Fourier and Laplace he obtained for the first time an 
exact integral representation for the free surface shape. For the asymptotic calculations 

oftheintegrals obtained, the method of stationary phase was suggested. This method was 
developed by Kelvin and is well established in the problems of wave motions in ideal 
liquids. 


